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ABSTRACT 

A buckling analysis was performed on a hat-stiffened panel subjected to shear loading. Both local
buckling and global buckling were analyzed. The global shear buckling load was found to be several times
higher than the local shear buckling load. The classical shear buckling theory for a flat plate was found to
be useful in predicting the local shear buckling load of the hat-stiffened panel, and the predicted local shear
buckling loads thus obtained compare favorably with the results of finite element analysis.

NOMENCLATURE

cross-sectional area of one corrugation leg, 

cross-sectional area of global panel segment bounded by p, 
 

Fourier coefficient of assumed trial function for w (x, y), in.

a length of global panel, in.

b horizontal distance between centers of corrugation and curved region, 
 in.

width of rectangular flat plate segment, in.

c width of global panel, in.

D flexural rigidity of flat plate, 

D* flexural stiffness parameter, 

transverse shear stiffnesses in 

effective bending stiffnesses of equivalent hat-stiffened panel, in-lb

one-half of diagonal region of corrugation leg, in.

modulus of elasticity of hat material, 

modulus of elasticity of face sheet material, 

lower flat region of hat stiffener, in.

upper flat region of hat stiffener, in.

shear modulus of hat material, 

shear modulus of face sheet material, 

distance between middle surfaces of hat top flat region and face sheet, 

distance between middle surfaces of hat upper and lower flat regions, in. 
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distance between middle surface of face sheet and centroid of global panel 
segment, in.

moment of inertia, per unit width, of corrugation leg, 

moment of inertia, per unit width, of one-half of reinforcing hat taken with 

respect to the neutral axis  of the hat stiffened panel, 

moment of inertia of corrugation leg of length l taken with respect to its neutral
axis 

moment of inertia, per unit width, of corrugation flat region  

moment of inertia, per unit width, of face sheet with respect to  axis passing 

through the centroid of the global panel segment, 

moment of inertia, per unit width, of face sheet and corrugation flat region combined, 

shear buckling load factor

l length of corrugation leg, 

length of one-half of hat,  

m number of buckle half-waves in x-direction

panel shear load, lb/in

n number of buckle half-waves in y-direction

p one half of reinforcing hat pitch, in.

shear buckling load, lb

shear flow in flat panel, lb/in

shear flow in hat, lb/in

radius of circular arc segments of corrugation leg, in.

thickness of reinforcing hat, in.

thickness of face sheet, in.

w panel out-of-plane displacement, in.

x, y rectangular Cartesian coordinates, in.

panel twist, 1/in

neutral axis of corrugation leg and face sheet combined
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corrugation angle (angle between the face sheet and the straight diagonal 
segment of corrugation leg), rad

Poisson ratio of hat material

Poisson ratio of face sheet material

shear stress, 

critical value at buckling

INTRODUCTION

Recently, various hot-structural panel concepts were advanced for applications to hypersonic aircraft
structural panels. Among those panels investigated, the hat-stiffened panel (fig. 1) was found to be an ex-
cellent candidate for potential application to hypersonic aircraft fuselage panels. This type of panel is
equivalent to a corrugated core sandwich panel with one face sheet removed. 

Buckling behavior of the hat-stiffened panel under compressive loading in the hat-axial direction, was
investigated by Ko and Jackson recently (ref. 1). They calculated both the local and global (general panel
instability) compressive buckling loads for the panel. The calculated local compressive buckling load was
found to be far lower than the global compressive buckling load, and compared fairly well with the exper-
imental data. To fully understand buckling characteristics of the hat-stiffened panel, the shear buckling be-
havior of this panel needs to be investigated.

This report presents the local and global buckling analyses of the hat-stiffened panel subjected to shear
loading. The predicted shear buckling loads are compared with the finite element shear buckling solutions. 

SHEAR BUCKLING ANALYSIS

To analyze the buckling behavior of the complex structure shown in figure 1, two approaches were
taken: (1) local buckling analysis, and (2) global buckling analysis (general panel instability). The follow-
ing sections describe these approaches.

Local Buckling

The purpose of local buckling analysis was to study the buckling behavior of a local weak region of
the panel. This weak region is identified as a rectangular flat plate region bounded by two legs of the re-
inforcing hat located at the center of the global panel (left diagram of fig. 2). The analysis looked at the
buckling behavior of this rectangular flat plate (slender strip). Because the reinforcing hat has high flexural
rigidity, the four edges of the rectangular plate were assumed to be simply supported (right diagram of
fig. 2). From reference 2, the shear buckling stress  in the rectangular flat plate may be written as 
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Figure 1. Hat-stiffened panel under shear loading.



Figure 2. Shear buckling of hat-stiffened panel analyzed using a simple model.

where  is the shear buckling load factor, which is a function of panel aspect ratio .   For  (a

square panel), ; and for  (an infinitely long panel), . For intermediate val-

ues of ,  may be found from a parabolic curve-fitting equation of the form (ref. 2)

(2)

The curve described by equation (2) is shown on the left in figure 3. The panel shear load  for the hat-
stiffened strip (left diagram of fig. 2) may be written in terms of shear flows (fig. 4) as (ref. 4) 
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Figure 3. Shear buckling load parameter as a function of panel aspect ratio.

Figure 4. Shear flows in the reinforcing hat and the flat region under the hat.
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(3)

where  and  are, respectively, the shear flows in the flat panel and the hat, and are given by (ref. 4) 

(4)

and

(5)

where  is the panel twist.

From equations (4) and (5), the ratio  may be calculated. Then, from equation (3), the panel shear
buckling load  of the hat-stiffened strip may be calculated as a function of  (eq. (1)).

Global Buckling

In the global buckling analysis (general instability analysis), the complex panel was represented by a
homogeneous anisotropic panel having effective elastic constants. These effective elastic constants must
be calculated first (ref. 3). This analysis is similar to the conventional buckling analysis of a sandwich
panel with one face sheet removed.

By using the small-deflection theory developed for flat sandwich plates (ref. 5) and solving the shear
buckling problem of the hat-stiffened plate using the Rayleigh-Ritz method of minimizing the total poten-
tial energy of a structural system (refs. 5 through 9), the following shear buckling equation is obtained:
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and are the undetermined Fourier coefficients of the assumed out-of-plane displacement w (x, y) of
the plate given by

(9)

Lastly, the shear buckling load factor appearing in equation (6) and the coefficients of characteristic
equation  = 1, 2, 3) appearing in equation (7) are defined, respectively, as (ref. 7) 
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Figure 5. Segment of hat-stiffened flat panel.

where

(19)

and  is the moment of inertia, per unit width, taken with respect to the panel neutral axis  (fig. 5),
and is given by 

(20)
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where  is the moment of inertia of a corrugation leg of length l, taken with respect to its neutral axis 
(fig. 5), and is given by

(21)

and  appearing in equation (19) is the distance between the middle surface of the face sheet and the panel
neutral axis  given by

(22)

The twisting stiffness  appearing in the expressions of  (eqs. (11) through (16)) may be obtained
from reference 4 with slight modification to fit the present problem in the following form: 
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where the nondimensional coefficient  is defined as

(29)

where the nondimensional parameters   and  are defined as 

(30)

(31)
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where

(33)

The shear buckling equation (6) yields a set of homogeneous equations associated with different values of
m and n. This set of equations may be divided into two groups that are independent of each other: one
group in which m ± n is odd (that is, antisymmetrical buckling), and the other in which m ± n is even (that
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is, symmetrical buckling) (refs. 7 and 9). Those equations may be written for as many half-wave numbers
as required for convergence of eigenvalue solutions. For the deflection coefficients  to have values
other than zero, the determinant of the coefficients of the unknown  of the simultaneous homogeneous
equations must vanish. The largest eigenvalue  thus obtained will give the lowest value of . 

Representative 12 12 determinants in terms of the coefficients of homogeneous simultaneous
equations written out from equation (6) for which m ± n is even and odd are given in the following
(refs. 10 and 11):

For m ± n = even (symmetrical buckling):

(34)
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For m ± n = odd (antisymmetrical buckling):

(35)

where the nonzero off-diagonal terms satisfy the conditions m =\ i , n =\ j, m ±  i =  odd, and n ±  j = odd.

Notice that the diagonal terms in equations (34) and (35) came from the first term of equation (6), and
the series term of equation (6) gives the off-diagonal terms of the matrices. The 12 12 determinant was
found to give sufficiently accurate eigenvalue solutions.
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NUMERICAL RESULTS 

The titanium hat-stiffened panel has the following material properties and geometries:

Local Buckling

For  and  equation (2) gives  The shear buckling stress
 may then be calculated from equation (1) as 

(36)
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Figure 6. Buckling shape of hat-stiffened panel under shear loading (finite element analysis by
W. Percy, Mc-Donnell-Douglas; full-panel model).

This local shear buckling load prediction is slightly higher than the value  calcu-
lated from finite element buckling analysis carried out by W. Percy of McDonnell-Douglas.* Figure 6
shows the shear buckling shape of the hat-stiffened panel based on Percy’s full-panel finite element model.
Clearly, the panel is under local buckling rather than general instability. The local buckling analysis pre-
dicts a slightly higher value of  because the four edges of the rectangular plate strip analyzed were
assumed to be simply supported. In reality, those four edges are elastically supported.

Global Buckling

To find the order of the determinant (review eqs. (34) and (35)) for converged eigenvalue solutions,
several different orders of the determinants were used for the calculations of . The eigenvalues were
found to have sufficiently converged beyond order 10. In the actual calculations of , the orders of the
determinants were taken to be 12, which were shown in equations (34) and (35). The eigenvalue solutions
thus obtained give the following lowest values of 

m ± n = even:  (41)

m ± n = odd:    (42)

Thus, the square panel will buckle symmetrically. Using  = 1.89, the panel shear buckling load 
may be calculated from equation (10) as 

*Personal communication with author.

Nxy( )cr 900 lb/in=

Nxy( )cr

kxy
kxy

kxy :

kxy 1.89=

kxy 1.93=

kxy Nxy( )cr
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(43)

which gives the shear buckling load of  this is about four times higher than the local
shear buckling load of  Thus, the panel is unlikely to fail under global buckling.

Summary of Data

The results of the shear buckling analysis of the hat-stiffened panel are summarized in the following
table.

CONCLUSION

The shear buckling behavior of a hat-stiffened panel was analyzed in light of local buckling and global
buckling. The predicted local buckling loads were slightly higher than those predicted using finite element
buckling analysis. The global buckling theory predicted a buckling load about four times higher than was
predicted from local buckling theory. Therefore, the hat-stiffened panel will buckle locally instead of
globally.
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